机构地区:[1]Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China [2]College of Chemistry and Chemical Engineering, Weifang College, Weifang 261061, P. R. China [3]Qingdao Supervision and Testing Center of Product Quality, Qingdao 266061, P. R. China [4]General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing 100088, P. R. China
出 处:《Journal of Ocean University of China》2012年第3期331-338,共8页中国海洋大学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No.20775074)
摘 要:The procedures of ultrasonic extraction and clean-up were optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. Samples were ultrasonically extracted, and the extracts were purified with a miniaturized silica gel chromatographic column and analyzed with high performance liquid chromatography (HPLC) with a fluorescence detector. Ultrasonication with methanol-dichloromethane (2:1, v/v) mixture gave higher extraction efficiency than that with dichloromethane. Among the three elution solvents used in clean-up step, dichloromethane-hexane (2:3, v/v) mixture was the most satisfactory. Under the optimized conditions, the recoveries in the range of 54.82% to 94.70% with RSDs of 3.02% to 23.22% for a spiked blank, and in the range of 61.20% to 127.08% with RSDs of 7.61% to 26.93% for a spiked matrix, were obtained for the 15 PAHs studied, while the recoveries for a NIST standard reference SRM 1941b were in the range of 50.79% to 83.78% with RSDs of 5.24% to 21.38%. The detection limits were between 0.75 ng L-1 and 10.99 ng L-1for different PAHs. A sample from the Jiaozhou Bay area was examined to test the established methods.The procedures of ultrasonic extraction and clean-up were optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. Samples were ultrasonically extracted, and the extracts were purified with a miniaturized silica gel chromatographic column and analyzed with high performance liquid chromatography (HPLC) with a fluorescence detector. Ultrasonication with methanol-dichloromethane (2:1, v/v) mixture gave higher extraction efficiency than that with dichloromethane. Among the three elution solvents used in clean-up step, dichloromethane-hexane (2:3, v/v) mixture was the most satisfactory. Under the optimized conditions, the recoveries in the range of 54.82% to 94.70% with RSDs of 3.02% to 23.22% for a spiked blank, and in the range of 61.20% to 127.08% with RSDs of 7.61% to 26.93% for a spiked matrix, were obtained for the 15 PAHs studied, while the recoveries for a NIST standard reference SRM 1941b were in the range of 50.79% to 83.78% with RSDs of 5.24% to 21.38%. The detection limits were between 0.75 ng L-1 and 10.99 ng L-1for different PAHs. A sample from the Jiaozhou Bay area was examined to test the established methods.
关 键 词:ultrasonic extraction marine sediment polycyclic aromatic hydrocarbon high performance liquid chromatography
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...