检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学近代物理系,合肥230026 [2]中国科学技术大学材料科学与工程系,合肥230026
出 处:《物理学报》2012年第21期31-35,共5页Acta Physica Sinica
摘 要:开放量子系统,即系统-热库模型,可以用一个关于密度算符的主方程来描述,比如,用来描述固态物理中耗散现象的Caldeira.Leggett主方程.虽然已经有人为了求解此主方程的约化密度矩阵的精确表达式而做过一些努力,但迄今还未见有解答.本文使用了一种全新的方法来求解Caldeira-Leggett方程,用这个新方法可以得到积分形式的显式表达.该方法的要点在于利用有序算符内积分技术把关于密度算符的微分方程首先转化成关于密度态矢量的微分方程,再将密度态矢量投影到热纠缠态表象中,Caldeira-Leggett方程就转变成了关于波函数的微分方程,而波函数是函数.这样就可以使用数学中求解微分方程的方法来求解出波函数.再次利用有序算符内积分技术,再将波函数转化为态矢量和算符,就得到了Caldeira-Leggett方程的积分形势解.Open quantum system, namely system-reservoir model, is described by a master equation of density operator. For example, the Caldeira-Leggett eqaution describes dissipative phenomenon of solid physics. Although some efforts have been made to derive the exact expression of this master equation, so far as we know, it has not been reported in the literature. The purpose of this paper is to provide a new approach to solving the Caldeira-Leggett equation, via this approach the explicit integral-form expression of ρ(t) can be obtained. The main point of this approach is to convert equation of density operator into an equation of density state vector, and then project density state vector into thermo entangled state representation and convert it into wave function by using the technique of integration within an ordered product of operators. Thus the master equation for Caldeira-Leggett model is converted into an differential equation of wave function. Wave function is also a function. The wave function can be obtained via the approach to solving the differential equation in mathematics. It can be converted into a density state vector and density operator. Using the technique of integration within an ordered product of operators again, the integra-form solution of the Caldeira-Leggett equation is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.79.92