机构地区:[1]School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
出 处:《Chinese Journal of Aeronautics》2012年第5期715-724,共10页中国航空学报(英文版)
基 金:Aeronautical Science Foundation of China (20100751010, 2010ZD11007)
摘 要:Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve time-varying parameters, the tradi- tional PF-based prognosis framework will probably generate serious deviations in results since it implements prediction through iterative calculation using the state models. To address the problem, this paper develops a novel integrated PF-LSSVR frame- work based on PF and least squares support vector regression (LSSVR) for nonlinear system failure prognosis. This approach employs LSSVR for long-term observation series prediction and applies PF-based dual estimation to collaboratively estimate the values of system states and parameters of the corresponding future time instances. Meantime, the propagation of prediction un- certainty is emphatically taken into account. Therefore, PF-LSSVR avoids over-dependency on system state models in prediction phase. With a two-sided failure definition, the probability distribution of system remaining useful life (RUL) is accessed and the corresponding methods of calculating performance evaluation metrics are put forward. The PF-LSSVR framework is applied to a three-vessel water tank system failure prognosis and it has much higher prediction accuracy and confidence level than traditional PF-based framework.Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve time-varying parameters, the tradi- tional PF-based prognosis framework will probably generate serious deviations in results since it implements prediction through iterative calculation using the state models. To address the problem, this paper develops a novel integrated PF-LSSVR frame- work based on PF and least squares support vector regression (LSSVR) for nonlinear system failure prognosis. This approach employs LSSVR for long-term observation series prediction and applies PF-based dual estimation to collaboratively estimate the values of system states and parameters of the corresponding future time instances. Meantime, the propagation of prediction un- certainty is emphatically taken into account. Therefore, PF-LSSVR avoids over-dependency on system state models in prediction phase. With a two-sided failure definition, the probability distribution of system remaining useful life (RUL) is accessed and the corresponding methods of calculating performance evaluation metrics are put forward. The PF-LSSVR framework is applied to a three-vessel water tank system failure prognosis and it has much higher prediction accuracy and confidence level than traditional PF-based framework.
关 键 词:prognostics and health management nonlinear systems failure prognosis particle filtering least squares supportvector regression time-varying parameter remaining useful life
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...