Density Functional Theory Investigation on the Second-Order Nonlinear Optical Properties of Chlorobenzyl-o-Carborane Derivatives  被引量:1

Density Functional Theory Investigation on the Second-Order Nonlinear Optical Properties of Chlorobenzyl-o-Carborane Derivatives

在线阅读下载全文

作  者:刘岩 杨国春 孙世玲 苏忠民 

机构地区:[1]Institute of Functional Material Chemistry,Faculty of Chemistry,Northeast Normal University,Changchun,Jilin 130024,China

出  处:《Chinese Journal of Chemistry》2012年第10期2349-2355,共7页中国化学(英文版)

摘  要:The structures and second-order nonlinear optical (NLO) properties of a series of chlorobenzyl-o-carboranes derivatives (1 12) containing different push-pull groups have been studied by density functional theory (DFT) cal- culation. Our theoretical calculations show that the static first hyperpolarizability (fltot) values gradually increase with increasing the π-conjugation length and the strength of electron donor group. Especially, compound 12 exhibits the largest βtot (62.404 × 10^-30 esu) by introducing tetrathiafulvalene (TTF), which is about 76 times larger than that of compound 1 containing aryl. This means that the appropriate structural modification can substantially increase the first hyperpolarizabilities of the studied compounds. For the sake of understanding the origin of these large NLO responses, the frontier molecular orbitals (FMOs), electron density difference maps (EDDMs), orbital energy and electronic transition energy of the studied compounds are analyzed. According to the two-state model, the lower transition energy plays an important role in increasing the first hyperpolarizability values. This study may evoke possible ways to design preferable NLO materials.The structures and second-order nonlinear optical (NLO) properties of a series of chlorobenzyl-o-carboranes derivatives (1 12) containing different push-pull groups have been studied by density functional theory (DFT) cal- culation. Our theoretical calculations show that the static first hyperpolarizability (fltot) values gradually increase with increasing the π-conjugation length and the strength of electron donor group. Especially, compound 12 exhibits the largest βtot (62.404 × 10^-30 esu) by introducing tetrathiafulvalene (TTF), which is about 76 times larger than that of compound 1 containing aryl. This means that the appropriate structural modification can substantially increase the first hyperpolarizabilities of the studied compounds. For the sake of understanding the origin of these large NLO responses, the frontier molecular orbitals (FMOs), electron density difference maps (EDDMs), orbital energy and electronic transition energy of the studied compounds are analyzed. According to the two-state model, the lower transition energy plays an important role in increasing the first hyperpolarizability values. This study may evoke possible ways to design preferable NLO materials.

关 键 词:chlorobenzyl-o-carborane tetrathiafulvalene (TTF) FERROCENE nonlinear optical property densityfunctional theory (DFT) 

分 类 号:O635.1[理学—高分子化学] O641.121[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象