Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Light-Emitting Diodes  

Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Light-Emitting Diodes

在线阅读下载全文

作  者:冉雪芹 封继康 黄维杨 任爱民 同贵江 孙家钟 

机构地区:[1]State Key Laboratory of Theoretical and Computational Chemistry,Institute of Theoretical Chemistry,Jilin Uni-versity,Changchun 130023,China [2]Department of Chemistry and Centre for Advanced Luminescence Materials,Hong Kong Baptist University,Wa-terloo Road,Kowloon Tong,Hong Kong,China [3]Oepartment of Chemistry,Faculty of Science,Xi'an Jiao Tong University,Xi'an,Shaanxi 710049,China

出  处:《Chinese Journal of Chemistry》2012年第10期2431-2439,共9页中国化学(英文版)

基  金:This work is supported by the Major State Basic Re- search Development Program (No. 2002CB613406), the National Natural Science Foundation of China (No. 20973078), the Open Project of State Key Laboratory of Supramolecular Structure and Materials of Jilin Univer- sity (No. SKLSSM200716). W.-Y.W. thanks the Hong Kong Research Grants Council (No. HKBU202709) and the Hong Kong Baptist University (No. FRG2/08- 09/111) for financial support.

摘  要:An elaborated theoretical investigation on the optical and electronic properties of three fluorene-based plati- num(II) and iridium(III) cyclometalated complexes Pt-a, Ir-a and lr-b is reported. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree Fock ap- proaches, while the lowest triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time-dependent density functional theory (TD-DFT) level, molecular absorption and emission properties were calculated on the basis of optimized ground- and excited-state geometries, respectively. The computational results show that the appearance of triphenylamino (TPA) moiety at the 9-position of fluorene ring favors the hole-creation and leads to red-shifts of absorption and emission spectra. Moreover, Pt-a and Ir-b are nice hole-transporting materials whereas Ir-a has good charge-transfer balance, which render them useful for the realiza- tion of efficient OLEDs (Organic Light-Emitting Diodes).An elaborated theoretical investigation on the optical and electronic properties of three fluorene-based plati- num(II) and iridium(III) cyclometalated complexes Pt-a, Ir-a and lr-b is reported. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree Fock ap- proaches, while the lowest triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time-dependent density functional theory (TD-DFT) level, molecular absorption and emission properties were calculated on the basis of optimized ground- and excited-state geometries, respectively. The computational results show that the appearance of triphenylamino (TPA) moiety at the 9-position of fluorene ring favors the hole-creation and leads to red-shifts of absorption and emission spectra. Moreover, Pt-a and Ir-b are nice hole-transporting materials whereas Ir-a has good charge-transfer balance, which render them useful for the realiza- tion of efficient OLEDs (Organic Light-Emitting Diodes).

关 键 词:fluorene-based platinum(II) and iridium(III) cyclometalated complexes optical and electronic proper-ties intraligand mctal-to-ligand charge transfer 

分 类 号:O481[理学—固体物理] O613.71[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象