Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles  被引量:14

Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles

在线阅读下载全文

作  者:Ehsan Seyedi Hosseininia 

机构地区:[1]Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran

出  处:《Particuology》2012年第5期542-552,共11页颗粒学报(英文版)

基  金:supported by Research Deputy of Ferdowsi University of Mashhad.The provided grant(No.16759-03/12/89)

摘  要:In the present article, we study the effect of inherent anisotropy, i.e., initial bedding angle of particles and associated voids on macroscopic mechanical behavior of granular materials, by numerical simulation of several biaxial compression tests using the discrete element method (DEM). Particle shape is considered to be irregular convex-polygonal. The effect of inherent anisotropy is investigated by following the evolution of mobilized shear strength and volume change during loading. As experimental tests have already shown, numerical simulations also indicate that initial anisotropic condition has a great influence on the strength and deformational behavior of granular assemblies. Comparison of simulations with tests using oval particles, shows that angularity influences both the mobilized shear strength and the volume change regime, which originates from the interlocking resistance between particles.In the present article, we study the effect of inherent anisotropy, i.e., initial bedding angle of particles and associated voids on macroscopic mechanical behavior of granular materials, by numerical simulation of several biaxial compression tests using the discrete element method (DEM). Particle shape is considered to be irregular convex-polygonal. The effect of inherent anisotropy is investigated by following the evolution of mobilized shear strength and volume change during loading. As experimental tests have already shown, numerical simulations also indicate that initial anisotropic condition has a great influence on the strength and deformational behavior of granular assemblies. Comparison of simulations with tests using oval particles, shows that angularity influences both the mobilized shear strength and the volume change regime, which originates from the interlocking resistance between particles.

关 键 词:Inherent anisotropyGranular materialDiscrete element methodPolygonal particles 

分 类 号:TQ021[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象