检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐国钧[1] 刘永胜[1] 李题印[1] 胡晓琴[1] 包拯民[1] 熊希聪[2] 周念成[2]
机构地区:[1]浙江省电力公司余杭供电局,浙江杭州311100 [2]输配电装备及系统安全与新技术国家重点实验室,重庆大学电气工程学院,重庆400044
出 处:《电力系统保护与控制》2012年第22期38-45,共8页Power System Protection and Control
摘 要:电动汽车充电负荷具有时间和空间不确定性,利用电动汽车充电行为的统计数据对充电负荷进行概率模拟,评估电动汽车接入配网的影响,是充电站规划和电动汽车充放电管理的基础。通过对不同类型电动汽车充电行为在时间和空间上的差异分析,应用层次分类法构建了反映电动汽车充电负荷特性的层次分类框架,利用层次分析法确定配网中各类电动汽车的比重,再结合电动汽车充电负荷的蒙特卡洛模拟,建立电动汽车对配网负荷影响的评估方法。最后通过某地的配网实测负荷数据和IEEE-34节点算例,应用所提出的方法评估分析了采用不同充电方式的电动汽车对配网的影响,结果表明合理配置不同充电方式的电动汽车比例,可有效减小电动汽车充电对配网负荷的冲击。The charging load of electric vehicles (EV) often changes with time and space. The basement of charging station planning and management of EVs charging and discharging is to assess the impact between the EV and the distribution network, therefore, it is necessary to use the measured statistic data to simulate the charging load's uncertainty. According to the difference between the charging load of different types of EVs on time and space, a classification framework which can reflect the characteristics of EVs charging load is proposed by the hierarchy classification. Then the proportion of various EVs integrated into the distribution grid can be determined on the basis of the analytic hierarchy process. Combined with the Monte Carlo simulation of charging load, the paper builds an assessment method to evaluate the impacts of EVs on the distribution grid. Finally, based on the distribution network load data of one place and the IEEE-34 node example, the assessment and analysis of the impact on distribution network caused by EVs with different charging methods is made. And the results show that the distribution grid load impacts could be reduced effectively through the appropriate configuration of EVs proportion with different charging methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.82