空时欠采样下多目标频率和方位联合估计新方法  被引量:5

An Effective Method for Joint Estimation of Frequency and DOA with Sub-Nyquist Spatial-Temporal Signals Based on GRCRT for Multiple Numbers

在线阅读下载全文

作  者:梁红[1] 张恒[1] 

机构地区:[1]西北工业大学航海学院,陕西西安710072

出  处:《西北工业大学学报》2012年第5期694-698,共5页Journal of Northwestern Polytechnical University

基  金:国家自然科学基金(61201322)资助

摘  要:针对空时欠采样下多个窄带信号参量估计问题,提出了一种基于同时估计多实数的广义稳健中国剩余定理的频率和方位联合解模糊方法。该方法首先对任意单阵元采用多次时域欠采样,获得多个目标的模糊的频率估计值,然后利用同时估计多个实数的广义稳健中国剩余定理估计出多目标的无模糊频率;在空时欠采样下,获得多组阵元接收到的信号相位差的模糊值,再利用广义稳健中国剩余定理解相位模糊,从而估计出多源信号的真实方位。仿真实例表明新提出的方法可以在空时欠采样情况下有效地对多个目标同时解频率和方位模糊,频率和方位联合估计的精度高,稳健性好。Aim. We propose a new approach to joint estimation of frequencies and DOAs( direction of arrivals) for multiple narrow-band signals with sub-Nyquist spatial-temporal sampling. Sections 1 through 3 explain our method of joint estimation mentioned in the title, which we believe is effective. In section 2, we brief GRCRT( Generalized Robust Chinese Remainder Theorem) for multiple numbers proposed by us in Ref. 4. The core of section 3 is: "We apply GRCRT for multiple numbers to solve frequency ambiguity and DOA ambiguity for multiple signals. In subsection 3.1, we applied the GRCRT for multiple numbers to multiple signals' frequency estimation in multiple undersampled waveforms. In subsection 3.2, we obtain ambiguous phase differences of multiple signals from several pairs of array antennas with sub-Nyquist spatial-temporal sampling; then we apply GRCRT to estimate the real DOA of each signal. " Section 4 presents a numerical example ; the simulation results, given in Figs. 2 and 3, show preliminarily that our new approach based on GRCRT for multiple numbers can indeed accurately and robustly estimate frequencies and DOAs of multiple narrow-band signals.

关 键 词:到达方向 效率 估计 频带 数学模型 蒙特卡洛方法 采样 传感器阵列 声纳 目标 广义稳健中国剩余定理 频率和方位联合估计 空时欠采样 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象