基于稀疏互质L型阵列的二维测向算法  被引量:9

Two-dimentional direction finding using a sparse coprime L-sharped array

在线阅读下载全文

作  者:邵华[1] 苏卫民[1] 顾红[1] 王灿[1] 

机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094

出  处:《电波科学学报》2012年第5期886-891,共6页Chinese Journal of Radio Science

基  金:南京理工大学自主科研专项计划资助项目(No.2010ZDJH05);部预研基金(No.9140A07010809BQ0205);高等学校博士学科点专项科研基金(No.20113219110018)

摘  要:在阵元数确定的情况下,稀疏阵列能增大阵列孔径,提高测向精度,但也带来测向模糊。针对这个问题,提出了一种稀疏互质L型阵列及其二维测向算法。利用四阶累积量的阵列扩展特性,并结合L型阵列中阵元间距的互质关系,在稀疏阵列结构下实现无模糊二维测向。与二维虚拟旋转不变算法相比,所提算法允许参考阵元间距大于信号半波长,从而提高了测向精度,同时利用逐步解模糊,保证较大的系统容差。计算机仿真结果验证了算法的有效性。The sparse array with determined elements can increase the array aperture to improve two-dimentional direction-of-arrival (2D-DOA)accuracy, but it brings direction finding ambiguity too. To solve this problem, A sparse coprime L- shaped array and two-dimensional direction finding algorithm based on it are presented. The proposed algorithm utilizes the array extending capability of fourth-order cumulant and the coprime relationship between the interelement spacings in L- shaped array so that 2D-DOA without ambiguity can be realized under sparse array structure. Compared with two-dimentional virtual-ESPRIT algorithm, the proposed algorithm allows the spacings between the reference elements more than one-half wavelength,which leads to improve directi'on finding accuracy. Meanwhile, the larger system tolerance is guaranteed by a step-by-step reduction of the number of ambiguities. Computer simulation results verify the effectiveness of the proposed algorithm.

关 键 词:稀疏互质 L型阵列 二维波达角估计 四阶累积量 

分 类 号:TN974[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象