检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094
出 处:《电波科学学报》2012年第5期886-891,共6页Chinese Journal of Radio Science
基 金:南京理工大学自主科研专项计划资助项目(No.2010ZDJH05);部预研基金(No.9140A07010809BQ0205);高等学校博士学科点专项科研基金(No.20113219110018)
摘 要:在阵元数确定的情况下,稀疏阵列能增大阵列孔径,提高测向精度,但也带来测向模糊。针对这个问题,提出了一种稀疏互质L型阵列及其二维测向算法。利用四阶累积量的阵列扩展特性,并结合L型阵列中阵元间距的互质关系,在稀疏阵列结构下实现无模糊二维测向。与二维虚拟旋转不变算法相比,所提算法允许参考阵元间距大于信号半波长,从而提高了测向精度,同时利用逐步解模糊,保证较大的系统容差。计算机仿真结果验证了算法的有效性。The sparse array with determined elements can increase the array aperture to improve two-dimentional direction-of-arrival (2D-DOA)accuracy, but it brings direction finding ambiguity too. To solve this problem, A sparse coprime L- shaped array and two-dimensional direction finding algorithm based on it are presented. The proposed algorithm utilizes the array extending capability of fourth-order cumulant and the coprime relationship between the interelement spacings in L- shaped array so that 2D-DOA without ambiguity can be realized under sparse array structure. Compared with two-dimentional virtual-ESPRIT algorithm, the proposed algorithm allows the spacings between the reference elements more than one-half wavelength,which leads to improve directi'on finding accuracy. Meanwhile, the larger system tolerance is guaranteed by a step-by-step reduction of the number of ambiguities. Computer simulation results verify the effectiveness of the proposed algorithm.
分 类 号:TN974[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112