Density Functional Theory Study of MoO_3 Molecule Encapsulated inside Single-walled Carbon Nanotubes  被引量:2

Density Functional Theory Study of MoO_3 Molecule Encapsulated inside Single-walled Carbon Nanotubes

在线阅读下载全文

作  者:李瑞 唐永建 张红 

机构地区:[1]College of Physical Science and Technology, Sichuan University [2]Research Center of Laser Fusion, China Academy of Engineering Physics

出  处:《Chinese Journal of Structural Chemistry》2012年第11期1634-1640,共7页结构化学(英文)

基  金:Supported by the National Natural Science Foundation of China(Nos.11074176and10976019,11176020);the Research Fund for the Doctoral Program of Higher Education of China(No.20100181110080)

摘  要:The binding energies, geometric structures and electronic properties of molybde- num trioxide (MOO3) molecule encapsulated inside (8, 0), (9, 0), (10, 0) and (14, 0) single-walled carbon nanotubes (SWNTs) have been investigated using density functional theory (DFT) method. Due to curvature effect, the calculated binding energy values are different, the variation of which indicated that the stability of MoO3/SWNT systems increases with increasing the radius of SWNTs. At the same time, owing to the presence of MoO3 molecule, the band gap of MoO3/SWNTs systems decreases. The analysis of density of states (DOS) reveals hybridization between C-2p and Mo-4d and between C-2p and O-2p orbitals near the Fermi level, which results in electron transfer from SWNTs to MoO3 molecule. The present computations suggest that electronic properties of SWNTs can be modified by doping MoO3 molecule.The binding energies, geometric structures and electronic properties of molybde- num trioxide (MOO3) molecule encapsulated inside (8, 0), (9, 0), (10, 0) and (14, 0) single-walled carbon nanotubes (SWNTs) have been investigated using density functional theory (DFT) method. Due to curvature effect, the calculated binding energy values are different, the variation of which indicated that the stability of MoO3/SWNT systems increases with increasing the radius of SWNTs. At the same time, owing to the presence of MoO3 molecule, the band gap of MoO3/SWNTs systems decreases. The analysis of density of states (DOS) reveals hybridization between C-2p and Mo-4d and between C-2p and O-2p orbitals near the Fermi level, which results in electron transfer from SWNTs to MoO3 molecule. The present computations suggest that electronic properties of SWNTs can be modified by doping MoO3 molecule.

关 键 词:MoO3 molecule single-walled carbon nanotubes density functional theory 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象