检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学电子与信息工程学院,黑龙江哈尔滨150001 [2]哈尔滨工业大学(威海)信息工程研究所,山东威海264209
出 处:《系统工程与电子技术》2012年第11期2198-2202,共5页Systems Engineering and Electronics
基 金:哈尔滨工业大学(威海)校科研基金(HIT(WT)XBQD201022)资助课题
摘 要:为提高波达方向(direction of arrival,DOA)估计的速度、降低运算量,在分析多重信号分类(multiplesignal classification,MUSIC)算法原理的基础上,利用噪声子空间降维的思想构造一维MUSIC对称压缩谱(MU-SIC symmetrical compressed spectrum,MSCS)。MSCS通过构造共轭噪声子空间并对噪声子空间及其共轭子空间的交集进行奇异值分解得到,其物理实质等效于在空间辐射源的对称位置添加相同数目的镜像辐射源。理论分析和仿真实验表明,MSCS不受实际阵型的限制,能将DOA估计的计算量降至传统MUSIC算法的50%,并具有与MUSIC相当的估计精度。To improve the speed of the estimation of tional complexity, a new spectrum called multiple signal direction of arrival (DOA) and decrease its computa classification (MUSIC) symmetrical compressed spec trum (MSCS) is proposed based on the analysis of the standard MUSIC algorithm. By creating the conjugate noise subspace, which equals to adding mirror sources in the symmetrical location of true DOAs, the dimension of the noise subspace is descended and MSCS is constructed by the singular value decomposing (SVD) on the in tersection of noise subspace and its conjugate subspace. Theoretical analysis and simulation results show that MSCS can be used with arbitrary arrays. Moreover, the new method is capable of reducing the computational complexity of DOA estimation to 50 % with a comparable precision to the conventional MUSIC algorithm.
关 键 词:MUSIC MUSIC对称压缩谱 波达方向估计 奇异值分解
分 类 号:TN959.2[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.224.98