采用Mel倒谱参数的咳嗽声识别方法  被引量:2

The identification method of cough signals using Mel-Frequency cepstrum coefficient

在线阅读下载全文

作  者:尹永[1] 莫鸿强[1] 

机构地区:[1]华南理工大学自动化科学与工程学院,广州510641

出  处:《信息技术》2012年第10期85-91,共7页Information Technology

摘  要:在诊断一个有慢性咳嗽的病人时,他的咳嗽强度和频率评估能提供很有价值的信息。因此提高咳嗽识别率,对疾病的诊断有着重要意义。从语音识别中被广泛应用的Mel倒谱参数出发,寻找咳嗽和语音在Mel倒谱参数中的区别。基于Mel倒谱参数的原理,将其计算过程中的Mel刻度滤波器对数能量的极值数分布情况提取出来作为咳嗽的识别特征。在病房环境下对录音文件进行实验,得到的咳嗽识别率为90%以上,同时能够将语音等非咳嗽信号有效地剔除,实验结果显示90%以上的语音信号被排除。在录音设备及环境等各项参数不变的条件下,对不同病人样本,可使用同一阈值对咳嗽进行识别。该方法过程简单,数据计算量小,便于快速识别。In the diagnosis of chronic cough patient,his cough intensity and frequency evaluation can provide valuable information.Therefore improving cough recognition rate has important significance for the diagnosis of disease.The article sets out from Mel-frequency cepstrum coefficient widely applied in the speech recognition,looking for the distinction of cough and voice in Mel-frequency cepstrum coefficient.Basing on the principle of Mel-frequency cepstrum coefficient,in the process of calculation the distribution of the extreme number of Mel scale filter logarithm energy are extracted as the recognition characteristics of cough signals.In the ward environment to the recorded files for experiment,the cough recognition rate is over 90%,at the same time voice and other non-cough signals are effectively removed,the experimental results show that more than 90% of the voice signals are ruled out.The recording equipment and environment and other parameters in the same conditions,for the different patient samples,the same threshold can be used to identify the cough.The method is simple,has small amount of data calculation,and facilitate quick identification.

关 键 词:Mel倒谱参数(Mel-Frequency CEPSTRUM Coefficient MFCC) Mel刻度滤波器对数能量 咳嗽识别 

分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象