检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,武汉430079
出 处:《遥感学报》2012年第6期1130-1144,共15页NATIONAL REMOTE SENSING BULLETIN
基 金:Foundation: National Natural Science Foundation of China (No.60890074), National High Technology Research and Development program of China (863program) (No.2011AA120404)
摘 要:在机载高分辨率X波段雷达影像上,城市水体、水泥道路、裸露土壤等地物回波信号弱,具有较强的相似性。目前的H/Alpha-Wishart、Freeman-Durden等系列算法对这些地物的区分不理想。本文针对X波段的全极化数据,提出基于预分类再分割的方法,重新估计极化协方差矩阵;然后根据协方差矩阵的熵值与同极化通道相位差的标准差构建特征空间,利用阈值法方法进行特征空间分割,获取最终精细分类结果。实验证明,本文方法可以在高分辨率条件下对水体、水泥道路、裸露土壤进行较为精确的划分,总体分类精度优于80%、Kappa系数高于0.7,是一种有效的低后向散射地物精细分类方法。In high resolution X-band POLSAR image, the water body, cement roads and the bare soil are always at low level radar backscattering signals, which is caused by no Bragg scattering phenomenon in smooth surfaces. The prevalent H/Alpha- Wishart and Freeman-Durden methods cannot distinguish those targets. This paper explores the improved X-band classification algorithm based on the pre-classification result for low backscattering objects in urban areas. The occurrence plane which is combined by entropy and the standard deviation of the co-pol channel diff phase is used to refine the pre-classification. The ex- periments show that the overall accuracy is above 80% and Kappa coefficient is higher than 0.7. The improved method improves the potential to distinguish the mixture classes of the low backscattering objects.
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166