检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高绍姝[1] 金伟其[1] 王霞[1] 王岭雪[1] 骆媛[1]
机构地区:[1]北京理工大学光电学院,光电成像技术与系统教育部重点实验室,北京100081
出 处:《光谱学与光谱分析》2012年第12期3197-3202,共6页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(60971010;61231014);总装十二五重点预研项目(40405030302);总装备部武器装备技术基础项目(211.2.48)资助
摘 要:提出了感知清晰度评价模型,来评价人眼对红外与可见光彩色融合图像细节和边缘的可辨识度。首先,利用人眼对比度敏感函数模型,抑制在特定观察条件下图像中人眼不敏感的频率成分。之后,在局部频带对比度模型基础上,结合人眼亮度掩模特性构造了感知对比度模型。最后,计算融合图像人眼兴趣区域(细节和边缘区域)的感知对比度,进而评价融合图像的感知清晰度。实验结果表明,与现有的五种彩色图像清晰(模糊)度的客观评价模型相比,考虑人眼视觉特性感知清晰度模型的计算结果与人眼主观感受具有较好的一致性,可以有效地对彩色融合图像清晰度进行客观评价。For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the percep- tual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image per- ceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The pro- posed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.
分 类 号:TN219[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.80.220