检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]运城学院公共计算机教学部,山西运城044000 [2]湖南大学信息科学与工程学院,长沙410082
出 处:《计算机应用》2012年第12期3319-3321,3325,共4页journal of Computer Applications
基 金:国家自然科学基金重大研究计划项目(90715029);国家自然科学基金资助项目(60603053;61070057)
摘 要:针对种群初始化时粒子过于集中和基本粒子群算法搜索精度不高的缺陷,提出了一种求解约束优化问题的改进粒子群算法。该算法引入佳点集技术来优化种群的初始粒子,使种群粒子初始化时分布均匀,因而种群具有多样性,不会陷入局部极值;同时使用协同进化技术使双种群之间保持通信,从而提高算法的搜索精度。仿真实验结果表明:将该算法用于5个基准测试函数,该算法均获得了理论最优解,其中有4个函数的测试方差为0。该算法提高了计算精度且鲁棒性强,可以广泛应用于其他约束优化问题中。To overcome the weakness of over-concentration when the population of Particle Swarm Optimization(PSO) is initialized and the search precision of basic PSO is not high,an Improved PSO(IPSO) for constrained optimization problems was proposed.A technique of Good Point Set(GPS) was introduced to distribute the initialized particles evenly and the population with diversity would not fall into the local extremum.Co-evolutionary method was utilized to maintain communication between the two populations;thereby the search accuracy of PSO was increased.The simulation results indicate that,the proposed algorithm obtains the theoretical optimal solutions on the test of five benchmark functions used in the paper and the statistical variances of four of them are 0.The proposed algorithm improves the calculation accuracy and robustness and it can be widely used in the constrained optimization problems.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.193.237