Water adaptive traits of deep-rooted C_3 halophyte(Karelinia caspica(Pall.) Less.) and shallow-rooted C_4 halophyte(Atriplex tatarica L.) in an arid region,Northwest China  

Water adaptive traits of deep-rooted C_3 halophyte(Karelinia caspica(Pall.) Less.) and shallow-rooted C_4 halophyte(Atriplex tatarica L.) in an arid region,Northwest China

在线阅读下载全文

作  者:Yuan FAN PinFang LI ZhenAn HOU TuSheng REN ChunLian XIONG Biao ZHANG 

机构地区:[1]College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China [2]Department of Resources and Environmental Science, Shihezi University, Shihezi 832000, China

出  处:《Journal of Arid Land》2012年第4期469-478,共10页干旱区科学(英文版)

基  金:supported by the National Basic Research Program of China(2009CB825101);the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110008110035)

摘  要:This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atriplex tatarica L. (C4, shallow-rooted annual Chenopodiaceae grass). Gas exchange, leaf water potential, and growth characteristics were investigated in two growing seasons in an arid area of Xinjiang to explore the physiological adaptability of the two halophytes. Both K. caspica and A. tatarica showed midday depression of transpiration, in- dicating that they were strong xerophytes and weak midday depression types. The roots of A. tatarica were con- centrated mainly in the 0-60 cm soil layer, and the leaf water potential (~L) increased sharply in the 0-20 cm layer due to high soil water content, suggesting that the upper soil was the main water source. On the other hand, K. caspica had a rooting depth of about 1.5 m and a larger root/shoot ratio, which confirmed that this species uptakes water mainly from deeper soil layer. Although A. tatarica had lower transpiration water consumption, higher water use efficiency (WUE), and less water demand at the same leaf water potential, it showed larger water stress impact than K. caspica, indicating that the growth of A. tatarica was restricted more than that of K. caspica when there was no rainfall recharge. As a shallow-rooted C4 species, A. tatarica displayed lower stomatal conductance, which could to some extent reduce transpiration water loss and maintain leaf water potential steadily. In contrast, the deep-rooted C3 species K. caspica had a larger root/shoot ratio that was in favor of exploiting groundwater. We concluded that C3 species (K. caspica) tapes water and C4 species (A. tatarica) reduces water loss to survive in the arid and saline conditions. The results provided a case for the phenotype theory of Schwinning and Ehleringer on halophytic plants.This paper focused on the water relations of two halophytes differing in photosynthetic pathway, phe- notype, and life cycle: Karelinia caspica (Pall.) Less. (C3, deep-rooted perennial Asteraceae grass) and Atriplex tatarica L. (C4, shallow-rooted annual Chenopodiaceae grass). Gas exchange, leaf water potential, and growth characteristics were investigated in two growing seasons in an arid area of Xinjiang to explore the physiological adaptability of the two halophytes. Both K. caspica and A. tatarica showed midday depression of transpiration, in- dicating that they were strong xerophytes and weak midday depression types. The roots of A. tatarica were con- centrated mainly in the 0-60 cm soil layer, and the leaf water potential (~L) increased sharply in the 0-20 cm layer due to high soil water content, suggesting that the upper soil was the main water source. On the other hand, K. caspica had a rooting depth of about 1.5 m and a larger root/shoot ratio, which confirmed that this species uptakes water mainly from deeper soil layer. Although A. tatarica had lower transpiration water consumption, higher water use efficiency (WUE), and less water demand at the same leaf water potential, it showed larger water stress impact than K. caspica, indicating that the growth of A. tatarica was restricted more than that of K. caspica when there was no rainfall recharge. As a shallow-rooted C4 species, A. tatarica displayed lower stomatal conductance, which could to some extent reduce transpiration water loss and maintain leaf water potential steadily. In contrast, the deep-rooted C3 species K. caspica had a larger root/shoot ratio that was in favor of exploiting groundwater. We concluded that C3 species (K. caspica) tapes water and C4 species (A. tatarica) reduces water loss to survive in the arid and saline conditions. The results provided a case for the phenotype theory of Schwinning and Ehleringer on halophytic plants.

关 键 词:Karelinia caspica Atriplex tatarica root/shoot ratio leaf water potential stomatal conductance TRANSPIRATION 

分 类 号:S793.9[农业科学—林木遗传育种] Q949.745.1[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象