Extremal Problems Related to Gauss-John Position  

Extremal Problems Related to Gauss-John Position

在线阅读下载全文

作  者:Ai Jun LI Gang Song LENG 

机构地区:[1]School of Mathematics and Information Science,Henan Polytechnic University [2]Department of Mathematics,Shanghai University

出  处:《Acta Mathematica Sinica,English Series》2012年第12期2527-2534,共8页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant No. 10971128);Shanghai Leading Academic Discipline Project (Grant No. S30104);Doctoral Fund of Henan Polytechnic University (Grant No. B2011-024)

摘  要:In this paper, we consider the extremal problem of the ;p-norm: min{;p(TK), o E TK C L, T E GL(n)}, where K, L are two convex bodies in Rn. Using the optimization theorem of John, we give necessary conditions for K to be in extremal position in terms of a decomposition of the identity. Fhrthermore, the weaker optimization problem, min{(lp(TK))p : TK C B2n,TK Sn-1 ≠ O,T E GL(n)}, is also considered. As an application, the geometric distance between the unit ball B2n and a centrally symmetric convex body K is obtained.In this paper, we consider the extremal problem of the ;p-norm: min{;p(TK), o E TK C L, T E GL(n)}, where K, L are two convex bodies in Rn. Using the optimization theorem of John, we give necessary conditions for K to be in extremal position in terms of a decomposition of the identity. Fhrthermore, the weaker optimization problem, min{(lp(TK))p : TK C B2n,TK Sn-1 ≠ O,T E GL(n)}, is also considered. As an application, the geometric distance between the unit ball B2n and a centrally symmetric convex body K is obtained.

关 键 词:Gauss-John position optimization theorem of John LP-NORM contact pair 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象