检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematics and Information Science,Henan Polytechnic University [2]Department of Mathematics,Shanghai University
出 处:《Acta Mathematica Sinica,English Series》2012年第12期2527-2534,共8页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No. 10971128);Shanghai Leading Academic Discipline Project (Grant No. S30104);Doctoral Fund of Henan Polytechnic University (Grant No. B2011-024)
摘 要:In this paper, we consider the extremal problem of the ;p-norm: min{;p(TK), o E TK C L, T E GL(n)}, where K, L are two convex bodies in Rn. Using the optimization theorem of John, we give necessary conditions for K to be in extremal position in terms of a decomposition of the identity. Fhrthermore, the weaker optimization problem, min{(lp(TK))p : TK C B2n,TK Sn-1 ≠ O,T E GL(n)}, is also considered. As an application, the geometric distance between the unit ball B2n and a centrally symmetric convex body K is obtained.In this paper, we consider the extremal problem of the ;p-norm: min{;p(TK), o E TK C L, T E GL(n)}, where K, L are two convex bodies in Rn. Using the optimization theorem of John, we give necessary conditions for K to be in extremal position in terms of a decomposition of the identity. Fhrthermore, the weaker optimization problem, min{(lp(TK))p : TK C B2n,TK Sn-1 ≠ O,T E GL(n)}, is also considered. As an application, the geometric distance between the unit ball B2n and a centrally symmetric convex body K is obtained.
关 键 词:Gauss-John position optimization theorem of John LP-NORM contact pair
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7