检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南师范大学物理与信息科学学院,长沙410081
出 处:《计算机工程与应用》2012年第34期190-194,236,共6页Computer Engineering and Applications
基 金:湖南省教育厅资助科研课题(No.10C0923)
摘 要:针对大输液中快速降落及相似杂质难以跟踪的问题,提出了一种将线性预测及LBP8,1riu2纹理模型中表示边界和角的5种基本模式FLBP8,1riu2(Five Local Binary Pattern)嵌入到Mean Shift算法中的异物检测方法,实现了对杂质目标的有效跟踪。利用简化的归一化互相关系数快速建立序列图像的背景,采用背景减除法、灰度图像形态学及最大对比度分割法提取目标杂质的精确位置,利用改进的Mean Shift算法连续跟踪数帧运动杂质确保检测准确率。实验结果表明,该方法对直径不小于3个像素的杂质检测率平均达到96.3%,检测速率平均达到0.8秒每瓶。It is difficult to track the impurities, which land fast and are very similar in transfusion bottles. In this paper, an impurity detection method is proposed to solve this problem by embedding linear prediction and FLBP8.1^riu2, which means five uniform texture models of Local Binary Pattern related to the edge and corner, into Mean shift algorithm. The background of image sequences is established using the simplified normalization cross correlation coefficients. The exact positions of the impurities are extracted applying background subtraction, gray image morphology, and maximum contrast segmentation. The improved Mean Shift is used to track motional impurities in a few successive frames to ensure detection accuracy. The experimental results show that the average detection rate is 96.3%; for the impurity larger than two pixels in diameter. The average detection time is 0.8 seconds per transfusion bottle.
关 键 词:相似度 背景减除 灰度形态学 LBP Mean SHIFT 异物自动检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.216.27