Infrared Spectroscopic Study of Fistular Onion (Allium fistulosum) and Garlic (Allium sativum) Rust Leaves  

葱蒜锈病叶的红外光谱研究(英文)

在线阅读下载全文

作  者:何志遥[1] 刘海丽[1] 吴秋娟[1] 周湘萍[1] 刘刚[1] 董勤[2] 俞帆[2] 

机构地区:[1]云南师范大学物理与电子信息学院,云南昆明650092 [2]云南大学实验中心,云南昆明650091

出  处:《Plant Diseases and Pests》2011年第4期21-23,共3页植物病虫害研究(英文版)

基  金:Supported by National Natural Science Foundation of China(30960179)~~

摘  要:[ Objective] Fourier transform infrared spectroscopy was used to study fistular onion (Alliumfistulosum) and garlic (Allium sativum) rust leaves, so as to explore the application potential of mid-infrared spectroscopy in the diagnosis of crop disease. [ Method] The normal green leaves and rust leaves of fistular onion and garlic were tested using fourier transform infrared spectroscopy, and their spectral differences were analyzed. [ Result] The infrared spectra of green leaves of fistular onion and garlic are mainly composed of the vibrational bands of polysaccharides, protein and ester. Normal and rust leaves exhibited differences in the fin- gerprint interval of 1 800 -900 cm-1 , in which the band at 1 640 cm-1 in the spectrum of flstular onion rust leaf became stronger, and the band at 1 103 cm-1 was not obvious compared with the spectrum of normal leaf. The absorbance ratios A1640/A1063, A1640/A1736, A1640/A2924, and A1063/A2924 of onion rust leaf were larger than the corresponding ratios A1638/A1 059, A1738/A1 38, A2921/A1638, and A2 92l/A1059 in the spectrum of normal leaf. The band of polysaccharides at 1 056 cm-1 in the spectrmn of garlic normal leaf was the strongest in fingerprint area, while the band at 1 634 cm-1 in the spectrum of garlic rust leaf was the strongest in that are- a. The absorbance ratios A1634/A1069 , A1634/A1099 , A1409/A2923 , and A1634/A737 of garlic rust leaf were larger than the corresponding ratios A1627/A1056 , A1623/A1104 , A1411/A2920 and A1627/A1740 of normal leaves. While the ratios A1634/A2923, A1059/A2923, and A1737/A2923 of garlic rust leaf were less than the corresponding values of A1627/A2920, A1056/A2920, and A1 740/A2920 of normal leaf. [ Conclusion] Rust leaf and normal leaf could be distinguished according to the differences in infrared spectra, and infrared spectroscopy could be developed as the detection method for crop diseases.[ Objective] Fourier transform infrared spectroscopy was used to study fistular onion (Alliumfistulosum) and garlic (Allium sativum) rust leaves, so as to explore the application potential of mid-infrared spectroscopy in the diagnosis of crop disease. [ Method] The normal green leaves and rust leaves of fistular onion and garlic were tested using fourier transform infrared spectroscopy, and their spectral differences were analyzed. [ Result] The infrared spectra of green leaves of fistular onion and garlic are mainly composed of the vibrational bands of polysaccharides, protein and ester. Normal and rust leaves exhibited differences in the fin- gerprint interval of 1 800 -900 cm-1 , in which the band at 1 640 cm-1 in the spectrum of flstular onion rust leaf became stronger, and the band at 1 103 cm-1 was not obvious compared with the spectrum of normal leaf. The absorbance ratios A1640/A1063, A1640/A1736, A1640/A2924, and A1063/A2924 of onion rust leaf were larger than the corresponding ratios A1638/A1 059, A1738/A1 38, A2921/A1638, and A2 92l/A1059 in the spectrum of normal leaf. The band of polysaccharides at 1 056 cm-1 in the spectrmn of garlic normal leaf was the strongest in fingerprint area, while the band at 1 634 cm-1 in the spectrum of garlic rust leaf was the strongest in that are- a. The absorbance ratios A1634/A1069 , A1634/A1099 , A1409/A2923 , and A1634/A737 of garlic rust leaf were larger than the corresponding ratios A1627/A1056 , A1623/A1104 , A1411/A2920 and A1627/A1740 of normal leaves. While the ratios A1634/A2923, A1059/A2923, and A1737/A2923 of garlic rust leaf were less than the corresponding values of A1627/A2920, A1056/A2920, and A1 740/A2920 of normal leaf. [ Conclusion] Rust leaf and normal leaf could be distinguished according to the differences in infrared spectra, and infrared spectroscopy could be developed as the detection method for crop diseases.

关 键 词:Fistular Onion leaf Garlic leaf Rust disease Fourier transform infrared spectroscopy China 

分 类 号:S436.33[农业科学—农业昆虫与害虫防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象