检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南机电高等专科学校机电工程系,河南新乡453002 [2]河南师范大学生命科学学院,河南新乡453007
出 处:《Plant Diseases and Pests》2010年第5期18-20,25,共4页植物病虫害研究(英文版)
基 金:Supported by Natural Science Foundation in Education Department of Henan Province(2008B210001)~~
摘 要:[ Objective] Computer image processing technology was used to distinguish the angular leaf spot and spotted disease in the agricultural production. [Method] The computer vision technology was used to carry out chromatic research on the plant pathological characteristics. The color and texture were taken as the plant disease image characteristic parameter to extract the perimeter, area and the shape of the lesion image, thus carrying out the classification judgment on the disease image. [ Result] C IE1976H IS chorma percentage histogram method was adopted to extract chromaticity characteristic parameters, the process was simple and effective with fast operation speed, eliminating the effect of leaf size and shape. The statistical characteristic parameter of chorma histogram was analyzed to obtain chroma skewness, which could significantly distinguish different symptoms of disease. [ Conclusion] The study suggested that chroma skewness could be adopted as the characteristic parameter to distinguish spotted disease with angular leaf spot.[ Objective] Computer image processing technology was used to distinguish the angular leaf spot and spotted disease in the agricultural production. [Method] The computer vision technology was used to carry out chromatic research on the plant pathological characteristics. The color and texture were taken as the plant disease image characteristic parameter to extract the perimeter, area and the shape of the lesion image, thus carrying out the classification judgment on the disease image. [ Result] C IE1976H IS chorma percentage histogram method was adopted to extract chromaticity characteristic parameters, the process was simple and effective with fast operation speed, eliminating the effect of leaf size and shape. The statistical characteristic parameter of chorma histogram was analyzed to obtain chroma skewness, which could significantly distinguish different symptoms of disease. [ Conclusion] The study suggested that chroma skewness could be adopted as the characteristic parameter to distinguish spotted disease with angular leaf spot.
关 键 词:Image processing Contour following Plant disease Characteristic value extraction CHROMA
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3