基于LS-SVM的木材表面缺陷网格化检测  被引量:4

Wood surface defects gridding detection based on LS-SVM

在线阅读下载全文

作  者:马大国[1] 马岩[1] 姜新波[1] 

机构地区:[1]东北林业大学,哈尔滨150040

出  处:《林业科技开发》2012年第6期73-76,共4页China Forestry Science and Technology

基  金:林业公益性行业科研专项(编号:201004007);国家自然科学基金项目(编号:30972314)

摘  要:针对图像分割的复杂性和局限性,作者提出一种基于最小二乘支持向量机(LS-SVM)的木材表面缺陷网格化检测方法。首先将木材表面图像划分成互不重叠的矩形块,然后依次计算每个矩形块图像的特征向量,用于描述各个矩形块图像,其特征向量由颜色特征和纹理特征等参数共同组成。最后将特征向量归一化后送入LS-SVM分类器,利用特征向量的相似度来进行缺陷的定位和识别。实验结果表明,该方法可有效进行木材表面缺陷检测,检测准确率超过93%。Due to the complexity and limitations of image segmentation,this paper proposed a wood surface defects gridding detection method based on least squares support vector machines(LS-SVM).The wood surface image was first divided into non-overlapping rectangular blocks.And then,every block's feature vector,which consisted of color features and texture features,was calculated to describe the blocks accurately.Finally,the extracted feature vectors were normalized and inputted into the LS-SVM classifier to locate and detect the defects.The experimental results have shown that this method can effectively identify the defect regions and the detection accuracy is higher than 93%.

关 键 词:木材 缺陷检测 最小二乘支持向量机 

分 类 号:S781[农业科学—木材科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象