Large-eddy Simulation of Fluid Flow and Heat Transfer in a Mixing Tee Junction  被引量:2

Large-eddy Simulation of Fluid Flow and Heat Transfer in a Mixing Tee Junction

在线阅读下载全文

作  者:LU Tao WANG Yongwei WANG Kuisheng 

机构地区:[1]School of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China

出  处:《Chinese Journal of Mechanical Engineering》2012年第6期1144-1150,共7页中国机械工程学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No. 50906002);National Basic Research Program of China(973 Program, Grant No. 2011CB706900);Beijing Novel Program of China(Grant No. 2008B16)

摘  要:The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold fluids was often used as thermal load in previous analysis of thermal fatigue failure, thereby the influences of the amplitude and frequency of temperature fluctuation on thermal fatigue failure were neglected. Based on the mechanism of flow and heat transfer which induces thermal fatigue, the turbulent mixing of hot and cold water in a tee junction is simulated with FLUENT platform by using the Large-eddy simulation(LES) turbulent flow model with the sub-grid scale(SGS) model of Smagorinsky-Lilly(SL) to capture the amplitude and frequency of temperature fluctuation. In a simulation case, hot water with temperature of 343.48 K and velocity of 0.15 m/s enters the horizontal main duct with the side length of 100 mm, while cold water with temperature of 296.78 K and velocity of 0.3 m/s enters the vertical branch duct with the side length of 50 mm. The numerical results show that the mean and fluctuating temperatures are in good agreement with the previous experimental data, which describes numerical simulation with high reliability and accuracy; the power spectrum density(PSD) on top wall is higher than that on bottom wall(as the frequency less than 1 Hz), while the PSD on bottom wall is relatively higher than that on top wall (as the frequency of 1-10Hz). The temperature fluctuations in full mixing region of the tee junction can be accurately captured by LES and can provide the theoretical basis for the thermal stress and thermal fatigue analyses.The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold fluids was often used as thermal load in previous analysis of thermal fatigue failure, thereby the influences of the amplitude and frequency of temperature fluctuation on thermal fatigue failure were neglected. Based on the mechanism of flow and heat transfer which induces thermal fatigue, the turbulent mixing of hot and cold water in a tee junction is simulated with FLUENT platform by using the Large-eddy simulation(LES) turbulent flow model with the sub-grid scale(SGS) model of Smagorinsky-Lilly(SL) to capture the amplitude and frequency of temperature fluctuation. In a simulation case, hot water with temperature of 343.48 K and velocity of 0.15 m/s enters the horizontal main duct with the side length of 100 mm, while cold water with temperature of 296.78 K and velocity of 0.3 m/s enters the vertical branch duct with the side length of 50 mm. The numerical results show that the mean and fluctuating temperatures are in good agreement with the previous experimental data, which describes numerical simulation with high reliability and accuracy; the power spectrum density(PSD) on top wall is higher than that on bottom wall(as the frequency less than 1 Hz), while the PSD on bottom wall is relatively higher than that on top wall (as the frequency of 1-10Hz). The temperature fluctuations in full mixing region of the tee junction can be accurately captured by LES and can provide the theoretical basis for the thermal stress and thermal fatigue analyses.

关 键 词:Large-eddy simulation FLOW heat transfer tee junction 

分 类 号:O357.5[理学—流体力学] TG376.9[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象