检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电子工程系,清华信息科学与技术国家实验室,北京100084
出 处:《清华大学学报(自然科学版)》2012年第11期1530-1534,共5页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金委员会与香港研究资助局联合科研基金资助项目(60931160443);国家自然科学基金项目(90920302;61005019);国家"八六三"高技术项目(2008AA040201);国家科技支撑计划资助项目(2009BAH41B01)
摘 要:大规模词表连续语音识别系统需要综合各种知识源,如声学模型、语言模型、发音词典等。其中,解码网络是识别引擎的基础,对提高解码器的性能有着至关重要的影响。有效综合这些知识源,构建一个紧致的解码网络,可以有效减少识别时的搜索空间和重复计算,显著提高解码速度。该文针对语音识别的动态解码网络进行研究,提出了词标志(word end,WE)节点前推算法,结合传统的前后向合并算法,实现了一个基于隐Markov模型状态为网络节点的紧凑动态解码网络。优化后的解码网络的节点数和边数分别是线性词典解码网络的1/4,是开源工具包HDecode的1/2;需要计算语言模型预测分数的节点数为HDecode的1/2。该声学模型基于三音子建模,可方便地移植到其他语种上。Large vocabulary continuous speech recognition systems (LVCSR) involve various knowledge sources, such as an acoustic model, a language model and a pronunciation dictionary. The decoder network as the basis of the decoder has a critical influence on the decoder performance. By effectively integrating these knowledge sources, a compact decoder network can reduce the search space and avoid repeated computations, which accelerates the recognition speed. This paper describes a compact dynamic decoder network based on hidden Markov model states as the network node, with an efficient word end pushing algorithm for speech recognition. The algorithm combines traditional forward and backward combination algorithms to reduce the number of nodes and edges by a factor of 4 compared to a linear lexical decoder network and with half as many nodes as the well-known open source tool HDecode. The number of nodes needed to calculate the look-ahead score is cut in half. This acoustic model is based on three phonemes so decoder networks can easily be built for other languages.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70