机构地区:[1]Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China [2]Key Laboratory of Tibetan Environmental Changes and Land Surface Processes,Chinese Academy of Sciences,Beijing 100101,China [3]Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences,Shijiazhuang 050061,China
出 处:《Chinese Science Bulletin》2012年第35期4600-4608,共9页
基 金:supported by the National Natural Science Foundation of China(41102221 and 41071131);the National Basic Research Program of China(2005CB422002);the Open Research Fund of Key Laboratory of Tibetan Environmental Changes and Land Surface Processes,Chinese Academy of Sciences(TEL 201205);the China Postdoctoral Science Foundation(20110490572)
摘 要:Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was conducted across an altitudinal transect(1100-4500 m) on the eastern slope of Gongga Mountain in the eastern Tibetan Plateau with an elevation interval of 50 m.Distributions of major pollen types along the transect indicated a weak correlation between Pinus pollen and the elevation.Distributions of Picea and Abies pollen(percentage sum of 2%-8%) could fairly indicate the elevation range of 2700-3700 m,as well as the subalpine dark coniferous forest and the timberline in the region.High percentage intervals of alpine types of Ericaceae,Cupressaceae and Cyperaceae were correlated to the high-elevation regions(3700-4500 m) dominated by alpine shrub meadow and alpine meadow.Seven altitudinal vegetation belts on the eastern slope of Gongga Mountain were well defined by discriminant analysis conducted on the modern pollen assemblages,as reflected by high values of probability of modern analog.Most of the modern pollen assemblages(88.5%) were typical for the vegetation types at their sampling locations.Thus,the relationship between the modern pollen assemblages and vegetation across the altitudinal transect based on discriminant analysis can be applied to the quantitative reconstruction of paleovegetation changes in the mountain regions of the eastern Tibetan Plateau.Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was conducted across an altitudinal transect(1100-4500 m) on the eastern slope of Gongga Mountain in the eastern Tibetan Plateau with an elevation interval of 50 m.Distributions of major pollen types along the transect indicated a weak correlation between Pinus pollen and the elevation.Distributions of Picea and Abies pollen(percentage sum of 2%-8%) could fairly indicate the elevation range of 2700-3700 m,as well as the subalpine dark coniferous forest and the timberline in the region.High percentage intervals of alpine types of Ericaceae,Cupressaceae and Cyperaceae were correlated to the high-elevation regions(3700-4500 m) dominated by alpine shrub meadow and alpine meadow.Seven altitudinal vegetation belts on the eastern slope of Gongga Mountain were well defined by discriminant analysis conducted on the modern pollen assemblages,as reflected by high values of probability of modern analog.Most of the modern pollen assemblages(88.5%) were typical for the vegetation types at their sampling locations.Thus,the relationship between the modern pollen assemblages and vegetation across the altitudinal transect based on discriminant analysis can be applied to the quantitative reconstruction of paleovegetation changes in the mountain regions of the eastern Tibetan Plateau.
关 键 词:青藏高原东部 海拔高度 判别分析 贡嘎山 植被带 松花粉 孢粉组合 定量重建
分 类 号:Q914[天文地球—古生物学与地层学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...