检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191
出 处:《仪器仪表学报》2012年第11期2509-2515,共7页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(60543006);博士点基金(201003259);重点实验室基金(9140C150105100C1502)资助项目
摘 要:灰度共生矩阵计算具有计算量大、计算延时长等缺点,严重影响计算的实时性。针对此问题在充分分析灰度共生矩阵计算并行性的基础上,提出了快速计算灰度共生矩阵的并行算法和并行体系结构,利用图像中像素之间计算的可并行性,设计多个Processing Elements(PEs)对多个像素进行并行计算,可有效地实现灰度共生矩阵的快速计算。由于嵌入式可重配置硬件平台资源有限,对灰度共生矩阵计算性能进行优化的同时还对资源消耗进行优化。通过对计算延时(latency)和资源消耗(area)的分析,建立新的优化目标函数,实现了性能和资源折衷的优化设计。Gray level co-occurrence matrix (GLCM) has the defect of great computation complexity and large computation latency, which seriously affects the real-time property of the calculation. Aiming at this problem, based on the deep analysis of the parallelism of calculating gray level co-occurrence matrix this paper proposes a parallel algorithm and parallel system architecture for calculating GLCM. Utilizing the parallel calculation possibility of image pixels, multiple Processing Elements (PEs) are designed to carry out parallel calculation for multiple pixels, which can achieve rapid calculation of GLCM. Because of the limited hardware resources of the embedded reconfigurable system, besides the optimization of GLCM calculation performance, this paper also achieves the optimization of the resource consumption. A new optimal objective function is proposed through analyzing the computation latency and resource consumption, and the optimal design that achieves the trade-off between calculation performance and resource consumption is realized.
关 键 词:灰度共生矩阵 并行计算 优化设计 计算性能 资源消耗
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42