检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318
出 处:《计算机工程与应用》2012年第35期62-66,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61170132);中国博士后科学基金资助项目(No.20090460864);黑龙江省教育厅科学技术研究资助项目(No.11551015)
摘 要:为更好解决网络流量预测问题,依据函数逼近论中分式的函数逼近性质和拟合能力要远远大于线性函数的性质,以及过程神经元网络对时变函数的非线性变换能力,提出一种分式过程神经元网络模型及其学习算法。实验结果证明,该网络模型对具有奇异值过程函数的柔韧逼近性质和在奇异值点附近区域反应的灵敏性优于一般过程神经元网络,以网络实测数据对模型进行训练和流量预测,取得了较好的应用效果。To better solve the network traffic prediction problems, according to that the fraction function approximation nature and fitting ability in function approximation are much larger than linear function, and the process neural networks have the ability of non-linear transformation to time-varying function, a fraction process neural network model and its learning algorithm are proposed. The experimental result shows that the network model has flexibility approximation properties for singular value process function and sensitivity reactions near the area in the singular value better than the general process neural network. The model can be trained and be used to forecast flow using network measured data, and achieve good application effect.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.76