检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连工业大学信息科学与工程学院,辽宁大连116034
出 处:《计算机工程与应用》2012年第35期114-117,共4页Computer Engineering and Applications
摘 要:K-means聚类算法的性能依赖于距离度量的选择,k-means算法将欧几里德距离作为最常用的距离度量方法。欧氏距离认为所有属性在聚类中作用是相同的,但是这种距离度量方法并不能准确反映样本间的相异性。针对这种不足,提出了融合变异系数的k-means聚类分析方法(CV-k-means),利用变异系数权重向量来减少不相关属性的影响。实验结果表明,该方法的聚类结果优于k-means算法。The performance of k-means clustering algorithm depends on the selection of distance metrics. The Euclid distance is commonly chosen as the similarity measure in k-means clustering algorithm, which treats all features equally and does not accurately reflect the dissimilarity among samples. K-means clustering algorithm based on Coefficient of Variation(CV-k-means) is proposed in this paper to solve this problem. The CV-k-means clustering algo- rithm uses variation coefficient weight vector to decrease the affects of irrelevant features. The experimental results show that the proposed algorithm can generate better clustering results than k-means algorithm.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44