检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南机电高等专科学校自动控制系,新乡453002
出 处:《中国粮油学报》2012年第12期108-110,共3页Journal of the Chinese Cereals and Oils Association
摘 要:利用BP神经网络的函数逼近特性和GM(2,1)的模型对非单调变化规律数据的描述特性,构建了一种新型的GNNM(2,1)模型,并将其用于粮仓温湿度变化趋势的建模。采用某粮仓一年内的温湿度采样值对其进行训练,并用训练好的模型预测来年温湿度的变化趋势。仿真结果表明,该模型的预测值有较高的精度,这对保证粮食储备安全具有一定的实用意义。In the article,the function approximation characteristics of the BP neural network and the non - mon- otone description characteristics of the GM (2,1) were combined in a new model - the new GNNM (2,1) model. And it is used for modeling of the granary temperature and humidity. It was trained by the temperature and humidity sampling data of a granary in a year. The trained model was used in the prediction of the temperature and humidity of the next year. The simulation results showed that the it had the high accuracy. There are certain practical significance for food reserves security.
关 键 词:新型GNNM(2 1)模型 温湿度 建模 粮食储备安全
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117