ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+ 1 CONJECTURE  被引量:1

ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+ 1 CONJECTURE

在线阅读下载全文

作  者:Dengguo FENG Xiubin FAN Liping DING Zhangyi WANG 

机构地区:[1]State Key Laboratory of Information Security,Institute of Software,Chinese Academy of Sciences [2]Institute of Software,Chinese Academy of Sciences

出  处:《Journal of Systems Science & Complexity》2012年第6期1215-1222,共8页系统科学与复杂性学报(英文版)

基  金:supported by Natural Science Foundation of China under Grant Nos.60833008 and 60902024

摘  要:This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has nol-periodic points for 2 ≤ 1 ≤12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial/-cycle for the T function for 1 ≤68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ 1≤ 102.

关 键 词:Diophantine equation eventual period periodic point 3x  1 conjecture. 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象