检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xia-Fen Li Wei-Dong Zhou Zhi-Feng Cui
机构地区:[1]The Institute of Information Optics,Zhejiang Normal University,Jinhua 321004,China [2]Department of Physics,Anhui Normal University,Wuhu 241000,China
出 处:《Frontiers of physics》2012年第6期721-727,共7页物理学前沿(英文版)
基 金:Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61178034), Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1100268), and partially supported by Key Research Project of University of Zhejiang Province, China (Grant No. ZD2009006), and the Program for Innovative Research Team, Zhejiang Normal University, Jinhua, Zhejiang Province, China.
摘 要:Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha-Boltzmann plot and Stark broadening are used to determine the temper- ature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.
关 键 词:laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) local thermodynamic equilibrium (LTE) electron temperature electron number density discharge voltage
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.19