Recent progress in the single-cell C4 photosynthesis in terrestrial plants  

Recent progress in the single-cell C4 photosynthesis in terrestrial plants

在线阅读下载全文

作  者:Shiu-Cheung LUNG Makoto YANAGISAWA Simon D. X. CHUONG 

机构地区:[1]Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada [2]Agronomy Department, Purdue University, West Lafayette, IN 47907-2054, USA

出  处:《Frontiers in Biology》2012年第6期539-547,共9页生物学前沿(英文版)

摘  要:Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed.Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed.

关 键 词:C4 plants single-cell C4 photosynthesis CHENOPODIACEAE dimorphic chloroplasts organelle compartmentation photosynthetic enzymes cytoskeleton protein targeting 

分 类 号:Q945.11[生物学—植物学] X52[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象