检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于蒙[1] 邹志云[1] 赵丹丹[1] 王志甄[1] 盖希杰[1]
机构地区:[1]防化研究院,北京102205
出 处:《石油化工自动化》2012年第6期31-35,共5页Automation in Petro-chemical Industry
摘 要:电加热过程具有强非线性和时变特性,参数固定的常规PID很难对其进行精确的控制。将常规PID控制和径向基函数(RBF)神经网络结合,提出了基于RBF神经网络的PID控制。该方法是通过神经网络的自学习能力在线调整PID控制的参数。通过Matlab与组态软件"组态王"的动态数据交换,在Matlab上编程实现了基于RBF神经网络的PID控制算法。将该控制算法应用于小型电加热反应温度控制装置,结果显示这种算法取得了比常规PID更好的控制效果。Electric-heating process owns strong nonlinearity and time-varying properties. It is difficult to control the temperature accurately using conventional PID controller with fixed PID parameters. Combined with conventional PID controller and radial basis function (RBF) neural network, a PID controller based on RBF neural network is proposed. The parameters of PID controller are tuned on-line using self-learning ability of RBF neural network. This PID control algorithm is successfully implemented in Matlab software which is integrated with configuration software KingView through their Dynamic Data Exchange (DDE) channel. The PID controller is used in a small electric-heating reactor. The result shows that the RBF neural network PID controller has much better control performance than the traditional PID controller.
关 键 词:径向基神经网络PID电加热反应器组态王
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.169.138