Crystal Structure and Chemical Composition of Ludwigite from Vranovac Ore Deposit (Boranja Mountain,Serbia)  被引量:1

Crystal Structure and Chemical Composition of Ludwigite from Vranovac Ore Deposit (Boranja Mountain, Serbia)

在线阅读下载全文

作  者:Pavle TANCIC Radovan DIMITRIJEVIC Maja POZNANOVIC Aleksandar PACEVSKI Slobodanka SUDAR 

机构地区:[1]Geological Institute of Serbia [2]Faculty of Mining and Geology,Department of Mineralogy and Crystallography

出  处:《Acta Geologica Sinica(English Edition)》2012年第6期1524-1538,共15页地质学报(英文版)

摘  要:The crystal structure of ludwigite from Vranovac ore deposit (Boranja Mt., Serbia) was refined using the X-ray powder diffraction (XRPD) Rietveld method in the space group Pbam to a final RB=7.45% and RF=5.26%. It has the unit cell dimensions of: a=9.2515(2) A; b=12.3109(2) A; c=3.03712 (7) A; and V=345.91(1) A3. The calculated distances and angles are mostly in good agreement with the Mg2+-Fe2+ substitutions across the M(1) and M(3) sites, as well as with the Fe3+-AI3+ replacement in the M(4) site. However, the mean observed M(2)-O distance is considerably shorter than prescribed, due to a slight increase of the Fe3+ content in the M(2) site. Such replacement was compensated by slight increase of the Fe2+ content in the M(4) site, resulting in the (Mg1.4sFe2+o.46Fe3+o.osMno.o2)2.o1 (Fe3+o.94Fe2+0.04Al0.02)1.00B1.00Os composition. The formation temperature was estimated to be about 500- 600C. The influences of the various chemical compositions to the crystallographic parameters, M-O distances, M(3) and M(4) sites shift, distortion parameters and estimated valences, were also studied and compared with other reference samples.The crystal structure of ludwigite from Vranovac ore deposit (Boranja Mt., Serbia) was refined using the X-ray powder diffraction (XRPD) Rietveld method in the space group Pbam to a final RB=7.45% and RF=5.26%. It has the unit cell dimensions of: a=9.2515(2) A; b=12.3109(2) A; c=3.03712 (7) A; and V=345.91(1) A3. The calculated distances and angles are mostly in good agreement with the Mg2+-Fe2+ substitutions across the M(1) and M(3) sites, as well as with the Fe3+-AI3+ replacement in the M(4) site. However, the mean observed M(2)-O distance is considerably shorter than prescribed, due to a slight increase of the Fe3+ content in the M(2) site. Such replacement was compensated by slight increase of the Fe2+ content in the M(4) site, resulting in the (Mg1.4sFe2+o.46Fe3+o.osMno.o2)2.o1 (Fe3+o.94Fe2+0.04Al0.02)1.00B1.00Os composition. The formation temperature was estimated to be about 500- 600C. The influences of the various chemical compositions to the crystallographic parameters, M-O distances, M(3) and M(4) sites shift, distortion parameters and estimated valences, were also studied and compared with other reference samples.

关 键 词:LUDWIGITE crystal structure chemical composition M-O distances distortion parameters ions valences comparison formation temperature 

分 类 号:O614.121[理学—无机化学] P612[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象