检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于彦伟[1] 王沁[1] 王小东[1] 王欢[1] 何杰[1]
机构地区:[1]北京科技大学计算机与通信工程学院,北京100083
出 处:《仪器仪表学报》2012年第12期2803-2811,共9页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(61172049;61003251);国家863计划(2011AA040101);教育部博士点基金(20100006110015)资助项目
摘 要:为了解决轨迹数据流中实时查询问题,提出了一种面向实时查询处理的轨迹数据流挖掘框架(trajectory data streammining framework,TSMF),该框架包括2个部分:在线的轨迹数据流挖掘和离线的实时查询处理。在线部分,首先,对实时接收的轨迹数据作基于密度的线段流聚类,获取到密度聚集的线段簇,然后,在轨迹簇树和蜂群模式哈希表存储索引结构上,根据线段簇结果对轨迹簇和蜂群模式进行在线更新;离线部分,实现了当前关闭轨迹簇(current closed trajectory clusters query,CCTC)、当前关闭蜂群模式(current closed swarm query,CCSwarm)和邻居轨迹(k-nearest nejghboring trajectory,k-NNT)3种面向移动目标的实时查询处理方法以响应用户的实时查询请求,当用户请求查询时,在实时挖掘出的轨迹簇和蜂群模式中快速查找结果。在大规模真实数据和合成数据上的综合实验验证了TSMF的挖掘效果、高效率性、可扩展性和较高的查询处理速度。In order to solve the real time query problem in trajectory data stream, a trajectory data stream mining framework (TSMF) facing to real time query processing is proposed ,which contains two parts: online trajectory data stream mining and offline real time query processing. For the online part, we first perform online line segment data stream clustering based on density to obtain line segment clusters for received data stream. Then, according to the line segment cluster results, the trajectory clusters and swarm patterns are updated online based on TCT and SHT storage index. For the offline part,in order to respond to users' real time query request, three real time query pro- cessing methods facing to moving target are implemented, which are current closed trajectory clusters query (CCTC), current closed swarm query (CCSwarm) and k-nearest neighboring trajectory(k-NNT) query. When a user requests to query from trajectory data stream, the query result is quickly reported from the trajectory clusters and swarm patterns discovered in the online part. Comprehensive experiments on large scale real trajectory data and synthetic data demonstrate the mining effectiveness, efficiency, scalability and fast query processing speed of the proposed TSMF framework.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30