L1 norm optimal solution match processing in the wavelet domain  被引量:1

小波域L1范数最优解匹配处理(英文)

在线阅读下载全文

作  者:龙云[1] 韩立国[1] 韩利[1] 谭尘青[1] 

机构地区:[1]吉林大学地球探测科学与技术学院,长春130026

出  处:《Applied Geophysics》2012年第4期451-458,496,共9页应用地球物理(英文版)

基  金:sponsored by the Natural Science Foundation of China(No.41074075);Graduate Innovation Fund by Jilin University(No.20121070)

摘  要:Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.如何通过匹配地震数据提取更有价值的信息越来越受地球物理学家的关注。匹配滤波广泛的用于资料拼接、新老资料匹配、不同震源资料匹配、四维地震监测等重要领域。传统地匹配滤波方法受多方面的限制,难以克服噪声的影响。基于传统的匹配滤波,提出小波域内L1范数最优匹配处理。文中将两种不同类型的地震数据分解到小波域,利用L1范数稀疏解收敛性好和抗噪性强的特点,在小波域中针对各个不同的细节部分提取有效地震信号,再进行L1范数最优匹配。模型试算证明,经本文方法能有效地压制随机噪声,匹配后的数据在波形、振幅和相位一致性等方面较常规方法效果更好。实际资料处理结果也证实:小波域内L1范数最优匹配后的地震数据同相轴连续性更好,达到了高精度地震数据匹配的目标。

关 键 词:Wavelet transform matching filter L 1 norm waveform consistency 

分 类 号:P631.44[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象