检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院弹药工程系,河北石家庄050003
出 处:《电子元件与材料》2013年第1期71-74,共4页Electronic Components And Materials
摘 要:以非硅MEMS器件作为研究对象,建立了非硅MEMS器件基本结构的热-机械耦合的有限元分析模型,并加载–60^+150℃的热冲击应力进行有限元分析。分析结果表明,热冲击应力导致结构层间由于热膨胀系数失配而产生应力,其中铜层与铬层界面间应力最大,且主要表现为x方向的剪切应力,其随温度循环在–75.6 MPa至125.3MPa之间转换,因此该界面间最易发生疲劳失效,导致结构分层。在此基础上,对某非硅MEMS惯性开关开展了热冲击试验和随机振动试验,验证了理论分析结果的正确性,找到了非硅MEMS器件的主要失效模式。Choosing non-silicon components as research object,the finite element model of non-silicon MEMS components basic structure with thermal-mechanical coupling was builted,and the thermal shock stress between –60-+150 ℃ was carried on the model.The results of finite element analysis illustrate that the thermal shock stress can induce the stress between structure layers because of coefficients of thermal expansion mismatch.The largest Von Misses stress occurs in the interface between copper layer and chromium layer,which mostly shows shear stress in x direction,and converts between –75.6 MPa and 125.3 MPa along with temperature varieties.This interface can easily induce fatigue failure and lead to delaminating phenomenon.Based on these analyses,the thermal shock test and random vibration test on certain non-silicon MEMS inertial switch were carried out,which verify theory analysis result and find out the major failure mode of non-silicon MEMS components.
分 类 号:TN403[电子电信—微电子学与固体电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200