多重分形去趋势波动分析的振动信号故障诊断  被引量:23

Diagnosing faults in vibration signals by multifractal detrended fluctuation analysis

在线阅读下载全文

作  者:李兆飞[1] 柴毅[1] 李华锋[1] 

机构地区:[1]重庆大学自动化学院,重庆400044

出  处:《华中科技大学学报(自然科学版)》2012年第12期5-9,17,共6页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(60974090);重庆市科技攻关项目(2010ac3055);中央高校基本科研业务费资助项目(CDJXS12170003)

摘  要:针对基于配分函数的多重分形分析不利于局部标度特性突显的问题,把多重分形去趋势波动分析(MF-DFA)方法引入到振动诊断领域,提出对振动信号进行多重分形谱参数(|B|,α0,Δα和Δf)故障特征分析,并将α0用于故障诊断.首先分析了振动信号的多重分形特性;然后提取振动信号的4种多重分形谱参数特征,并进行了比较;最后用支持向量机算法实现振动故障诊断.研究表明:去除趋势后,振动信号的波动呈现显著多重分形特征,正常状态振动信号的α0明显大于故障状态,而振动信号的|B|,Δα和Δf特征变化规律则不明显;α0作为故障特征量,能有效地区分正常状态与故障状态,有效实现了振动故障诊断.As partition function-based multiracial analysis is not easy to highlight the local scaling properties,the multi-fractal detrended fluctuation analysis(MF-DFA) was used to diagnose vibration faults,in which the vibration signals analysis was based on the features of the parameters(|B|,α0,Δα and Δf) of multi-fractal spectrum and α0 was employed to fault diagnosis.First,the multifractal characteristics of the vibration signal were analyzed.Then four kinds of multifractal spectrum parameters characteristics of the vibration signals were extracted and compared with each other.Finally,a support vector machine was applied to fault diagnosis in the vibration signals.Simulation results prove that the fluctuation of the vibration signals show significant multi-fractal characteristics and the α0 of the vibration signal in a normal state is significantly higher than an abnormal stats.However,the |B|,Δα and Δf features of the vibration signal show no significant differences.These demonstrate that the parameters α0 of singular spectrum as a fault feature value can distinguish between normal status and fault status with high performance for the vibration fault diagnosis.

关 键 词:振动信号 滚动轴承 故障诊断 多重分形 去趋势波动分析 

分 类 号:TH212[机械工程—机械制造及自动化] TH213.3

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象