Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing  被引量:9

Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing

在线阅读下载全文

作  者:GONG Wei PAN LinLin LIN Qiang ZHOU YuanYuan XIN ChengQi YU XiaoMin CUI Peng HU SongNian YU Jun 

机构地区:[1]CAS Key Laboratory of Genome Sciences and Information,Beijing Institute of Genomics,Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences

出  处:《Science China(Life Sciences)》2013年第1期1-12,共12页中国科学(生命科学英文版)

基  金:supported by the National Basic Research Program of China(2011CB944100,2011CB944101);the National Natural Science Foundation of China (90919024);the Special Foundation Work Program of Ministry of Science and Technology (2009FY120100);the National High Technology Research and Development Program of Ministry of Science and Technology of China (2012AA020409)

摘  要:Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mechanisms that regulate testis development. Our study also demonstrates significant advantages of RNA-seq technology for studying transcriptome during development.Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mecha- nisms that regulate testis development. Our study also demonstrates significant advantages of RNA-seq technology for study- ing transcriptome during development.

关 键 词:next-generation sequencing TRANSCRIPTOME mouse testis DEVELOPMENT 

分 类 号:Q75[生物学—分子生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象