一种顾及异常区域的海温多尺度分区方法  

A Multi-Scale Regionalization Method for Sea Surface Temperature by Considering Abnormal Region

在线阅读下载全文

作  者:邓敏[1] 石岩[1] 唐建波[1] 

机构地区:[1]中南大学测绘与国土信息工程系,湖南长沙410083

出  处:《测绘科学技术学报》2012年第6期391-396,400,共7页Journal of Geomatics Science and Technology

基  金:教育部新世纪优秀人才资助计划项目(NECT-10-0831);高等学校博士学科点专项科研基金项目(20110162110056);江苏省资源环境信息工程重点实验室(中国矿业大学)开放基金资助项目(JS201101);现代工程测量国家测绘地理信息局重点实验室经费资助项目(TJES1102)

摘  要:空间聚类分析是空间数据挖掘的主要方法之一,旨在发现海量数据中潜在的空间分布模式和异常特征。此处采用空间聚类分析和多尺度分析相结合的策略对海温进行多尺度气候分区。首先,针对气候时间序列特征和异常区域特征,提出一种顾及异常区域的多尺度分区方法;进而,分别采用传统方法和新方法对海温进行多尺度气候分区,通过比较分析发现新方法更优越;最后,利用气候指数对分区结果进行验证,说明新方法是有效的。Spatial clustering is an important tool of spatial data mining and knowledge discovery. Spatial cluste- ring aims to find the potential patterns of the spatial distribution and some abnormal patterns in a large spatial dataset. So spatial clustering is an effective approach for spatial regionalization based on the climate elements. For this purpose, a scale-space clustering method was proposed for multi-scale regionalization of sea surface temperature. Firstly, a modified multi-scale regionalization method with the consideration of abnormal region was developed based on scale-space theory for the climate time sequences. Secondly, a detailed comparison for the regionalization of the sea surface temperature was made between the traditional method and the modified method. It proved that the result of the modified method was more accurate than that of the traditional meth- od. Finally, the ocean climate indices were employed to illustrate the results of the regionalization by the modi- fied method.

关 键 词:海表气温 尺度空间理论 异常区域 多尺度分区 气候指数 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象