补偿最小二乘估计精化AR(p)的变形建模与预测  被引量:1

Refining for AR(p) modeling based on penalized least squares estimation in deformation prediction

在线阅读下载全文

作  者:高宁[1] 崔希民[1] 王果[1] 张玲[1] 卢立托[1] 

机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083

出  处:《工程勘察》2013年第1期51-53,72,共4页Geotechnical Investigation & Surveying

基  金:国家自然科学基金项目(41071328);国家重点基础研究发展规划(973)项目(2007CB209400);教育部世纪优秀人才支持计划资助项目(NECT-07-07098)

摘  要:以AR(p)模型为例,考虑模型误差对变形预测的影响,将模型误差看做非参数信号,采用半参数补偿最小二乘方法来处理,即利用半参数中的非参数分量表达模型误差;为更好地控制残差部分VTPV和光滑部分STRS之间的平衡,提出一种求解平滑参数α的Xu函数;最后,通过实例将精化后的AR(p)模型与灰色模型、灰神经网络模型、常规AR模型的结果进行了比较。结果表明,补偿最小二乘方法能有效地处理变形建模中存在的模型误差,具有较好的预测效果。In this paper,taking autoregressive model as an example,considering the influence of model errors in deformation analysis,and proposed that model errors as nonparametric,a penalized least squares method is used to deal with deformation data processing.There are two key steps in resolving semi-parametric model,one is to choose the regularization matrix,and the other is to determine the smoothing parameter.This paper focuses on the determination of the smoothing parameter.A new method for determining smoothing parameter,Xu function method,is presented.Finally,a prediction problem in subsidence of building used to explain the method.The results of the semi-parametric model,grey model,grey neural network model and autoregressive model,are compared,which demonstrates that the model errors can be compensated correctly by penalized least squares method and better prediction result can be obtained.

关 键 词:补偿最小二乘估计 AR(P)模型 模型误差 Xu函数法 变形 

分 类 号:P207.1[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象