Fuzzy Self-Adaptation of Mission-Critical Software Under Uncertainty  被引量:7

Fuzzy Self-Adaptation of Mission-Critical Software Under Uncertainty

在线阅读下载全文

作  者:Qi-Liang Yang Jian Lv Xian-Ping Tao Xiao-Xing Ma Jian-Chun Xing Wei Song 

机构地区:[1]State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China [2]School of National Defense Engineering, PLA University of Science and Technology, Nanjing 210007, China [3]School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China

出  处:《Journal of Computer Science & Technology》2013年第1期165-187,共23页计算机科学技术学报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos. 60736015, 61073031, 60973044, 61003019, and the National Basic Research 973 Program of China under Grant No. 2009CB320702.

摘  要:Mission-critical software (MCS) must provide continuous, online services to ensure the successful accomplish- ment of critical missions. Self-adaptation is particularly desirable for assuring the quality of service (QoS) and availability of MCS under uncertainty. Few techniques have insofar addressed the issue of MCS self-adaptation, and most existing approaches to software self-adaptation fail to take into account uncertainty in the self-adaptation loop. To tackle this problem, we propose a fuzzy control based approach, i.e., Software Fuzzy Self-Adaptation (SFSA), with a view to deal with the challenge of MCS self-adaptation under uncertainty. First, we present the SFSA conceptual framework, consisting of sensing, deciding and acting stages, and establish the formal model of SFSA to lay a rigorous and mathematical foundation of our approach. Second, we develop a novel SFSA implementation technology as well as its supporting tool, i.e., the SFSA toolkit, to automate the realization process of SFSA. Finally, we demonstrate the effectiveness of our approach through the development of an adaptive MCS application in process control systems. Validation experiments show that the fuzzy control based approach proposed in this work is effective and with low overheads.Mission-critical software (MCS) must provide continuous, online services to ensure the successful accomplish- ment of critical missions. Self-adaptation is particularly desirable for assuring the quality of service (QoS) and availability of MCS under uncertainty. Few techniques have insofar addressed the issue of MCS self-adaptation, and most existing approaches to software self-adaptation fail to take into account uncertainty in the self-adaptation loop. To tackle this problem, we propose a fuzzy control based approach, i.e., Software Fuzzy Self-Adaptation (SFSA), with a view to deal with the challenge of MCS self-adaptation under uncertainty. First, we present the SFSA conceptual framework, consisting of sensing, deciding and acting stages, and establish the formal model of SFSA to lay a rigorous and mathematical foundation of our approach. Second, we develop a novel SFSA implementation technology as well as its supporting tool, i.e., the SFSA toolkit, to automate the realization process of SFSA. Finally, we demonstrate the effectiveness of our approach through the development of an adaptive MCS application in process control systems. Validation experiments show that the fuzzy control based approach proposed in this work is effective and with low overheads.

关 键 词:mission-critical software software self-adaptation fuzzy self-adaptation fuzzy control self-adaptation logic weaving 

分 类 号:TP273.4[自动化与计算机技术—检测技术与自动化装置] TP273[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象