改进遗传算法径向基函数的FIR数字滤波器研究  被引量:2

Study of FIR Filtering Algorithm Based on the Improved Genetic Algorithm Radial Basis Function(RBF) Network

在线阅读下载全文

作  者:陈宝远[1] 陈光毅[1] 林喜荣[2] 李昌海[1] 曹晓敏[1] 

机构地区:[1]哈尔滨理工大学测控技术与仪器黑龙江省高校重点实验室,黑龙江哈尔滨150080 [2]哈尔滨理工大学电工电子教学中心,黑龙江哈尔滨150080

出  处:《哈尔滨理工大学学报》2012年第6期97-101,共5页Journal of Harbin University of Science and Technology

基  金:黑龙江省自然科学基金项目(F201026);哈尔滨理工大学教学研究项目(201100018)

摘  要:本文针对径向基函数(RBF)网络在实际应用中几种学习算法存在的缺陷和局限性,提出了利用改进遗传算法的径向基函数网络来设计FIR数字滤波器的方法,提高了全局寻优效率.为了证明这种新型混合遗传算法的有效性,本文用该算法设计了低通、高通FIR数字滤波器.采用Matlab进行仿真并给出了相应的仿真结果以验证其有效性.仿真结果表明:同其他现有的优化设计方法相比,本文研究的这种新算法可以很好地逼近理想滤波器,在通阻带内有更小的纹波,达到比较好的优化设计效果.This paper is based on the defects and limitations of several learning algorithms in the practical application of radial basis function(RBF) network,proposing the FIR digital filters designed by RBF network genetic optimization algorithm to improve the global optimization efficiency,the optimization algorithm adopted the improved genetic algorithm as the RBFNN learning algorithm.In order to prove the effectiveness of the new hybrid genetic algorithm,the low-pass and the high-pass FIR digital filters are designed through this algorithm in this paper,using Matlab simulation and giving the corresponding simulation results to verify the effectiveness of it.The simulation results show that compared with other existing design optimization methods,the new algorithm of this paper can further approximate the ideal filters,having the smaller ripple in the passband and the stopband and achieving better optimization design effect.

关 键 词:径向基函数(RBF)网络 遗传算法 FIR数字滤波器 

分 类 号:TP912.3[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象