Robustness and precision evaluation of the form error of micro-structured surfaces using real coded genetic algorithm  被引量:1

Robustness and precision evaluation of the form error of micro-structured surfaces using real coded genetic algorithm

在线阅读下载全文

作  者:周京博 孙涛 

机构地区:[1]Center of Precision Engineering,Harbin Institute of Technology

出  处:《Journal of Beijing Institute of Technology》2012年第4期479-486,共8页北京理工大学学报(英文版)

基  金:Supported by the Programme of Introducing Talents of Discipline to Universities (B07018)

摘  要:To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.

关 键 词:micro-structured surfaces form error evaluation surface matching real coded geneticalgorithm 

分 类 号:TH74[机械工程—光学工程] TP18[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象