机构地区:[1]Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging [2]National-Regional Key Technology Engineering Laboratory for Medical Ultrasound
出 处:《Chinese Science Bulletin》2013年第3期291-298,共8页
基 金:supported by the National Natural Science Foundation of China (61031003,81101171);Chinese Postdoctoral Science Foundation(20100470903);Shenzhen Science and Technology Planning Project(CXB201005240009A)
摘 要:The interaction between microbubble and elastic microvessel wall has been hypothesized to be important in the mechanisms of therapeutic ultrasound applications.In this study,a 2D axisymmetric finite element numerical model is established to study the interaction between elastic microvessel wall and oscillating microbubble in low frequency ultrasound field using fluid solid interaction method.The numerical results show that the bubble oscillation induces the vessel wall dilation and depression.The von Mises stress distribution over the microvessel wall is heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.23 MPa and 1.32 MPa under PNP 0.2 MPa and 0.5 MPa,respectively.When the bubble collapses,the circumferential stress decreases rapidly and the transmural pressure increases dramatically.Noticeably,the circumferential stress becomes compressive with the maximum magnitude 1.83 MPa under PNP 0.5 MPa,larger than the maximum tension value.It is possible that the rapid compression stress during bubble collapse plays important role in mechanical effect on microvessel wall endothelial lining disruption.The interaction between microbubble and elastic microvessel wall has been hypothesized to be important in the mechanisms of therapeutic ultrasound applications. In this study, a 2D axisymmetric finite element numerical model is established to study the interaction between elastic microvessel wall and oscillating microbubble in low frequency ultrasound field using fluid solid interaction method. The numerical results show that the bubble oscillation induces the vessel wall dilation and depression. The von Mises stress distribution over the microvessel wall is heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.23 MPa and 1.32 MPa under PNP 0.2 MPa and 0.5 MPa, respectively. When the bubble collapses, the circumferential stress decreases rapidly and the transmural pressure increases dramatically. Noticeably, the circumferential stress becomes compressive with the maximum magnitude 1.83 MPa under PNP 0.5 MPa, larger than the maximum tension value. It is possible that the rapid compression stress during bubble collapse plays important role in mechanical effect on microvessel wall endothelial lining disruption. microbubble, elastic microvessel, finite element method, ultrasound
关 键 词:相互作用 有限元法 超声场 微血管 弹性 微泡 低频 数值模型
分 类 号:R318.0[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...