检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李高望[1] 钱斌[1] 石东源[1] 段献忠[1]
机构地区:[1]强电磁工程与新技术国家重点实验室(华中科技大学),湖北省武汉市430074
出 处:《电网技术》2013年第1期32-38,共7页Power System Technology
基 金:国家863高技术基金项目(2011AA05A109)~~
摘 要:建立了以负荷峰谷差最小化为优化目标的计及用户行驶习惯的插电式混合动力汽车(plug-in hybrid electricvehicle,PHEV)智能充电模型,并对各时段PHEV的反向放电能力进行估算。以10机测试系统为算例,采用启发式二进制粒子群优化算法对机组组合模型进行求解,并对比分析了不同的PHEV控制方案对机组组合结果的影响。仿真结果表明,对PHEV采取不同的充放电控制方案,将对机组组合的优化结果产生显著的影响。采用智能充电策略,并利用PHEV的反向放电能力为电网提供备用,将使机组的发电成本降至最低。An intelligent charging model for plug-in hybrid electric vehicles (PHEVs), in which the minimized difference between peak- and valley-load is taken as optimization objective and driving habits of drivers are taken into account, is established, and the inverse discharge capacities of PHEVs in different time periods are estimated. On this basis, a unit commitment model containing PHEVs is built. Taking a 10-unit system as example, the proposed unit commitment model is solved by heuristic binary particle swamp optimization algorithm, and the influences of different PHEVs control schemes on unit commitment are analyzed and compared. Simulation results show that applying different charging and discharging schemes to PHEVs will obviously impact the optimization results of unit commitment; adopting intelligent charging strategy and utilizing inverse discharging capacity of PHEVs as spinning reserves, the power generation cost of units can be minimized.
分 类 号:TM91[电气工程—电力电子与电力传动] U469[机械工程—车辆工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15