检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学计算机与信息技术学院
出 处:《计算机工程与应用》2013年第2期9-12,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.61170132);中国博士后科学基金资助项目(No.20090460864);黑龙江省教育厅科学技术研究资助项目(No.11551015)
摘 要:为更好解决抽油机井示功图模式诊断问题,依据示功图绘制原理,将示功图识别看作动态系统连续曲线(位移-时间曲线和载荷-时间曲线)的模式识别问题。利用过程神经元能同时处理时、空二维信息,可自动抽取时变函数样本的过程模式特征,在机制上对时变信号的分类问题具有较好的适应性,提出一种基于对传过程神经元网络诊断模型及其学习算法。以油井实测数据对模型进行训练和故障识别,取得了较好的应用效果。To better solve the pattern diagnosis problem of the indicator diagram for pumping wells, this paper identifies the in- dicator diagram as pattern recognition problem of dynamic system continuous curve (displacement-time curve and load-time curve) according to drawing principles of indicator diagram. Process neural can deal with two-dimensional information of time and space simultaneously and can extract the process pattern characteristics of the set for time-varying functions automatically. The method on mechanism has good adaptability to solve classification problems of time-varying signals. Based on above, a counterpropagation process neural network diagnostic model and learning algorithm are proposed. The model can be trained and be used to identify fault using well measured data, and achieves good application results.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222