检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学控制与计算机工程学院,河北保定071003
出 处:《电力科学与工程》2012年第12期9-13,共5页Electric Power Science and Engineering
基 金:中央高校基本科研业务费专项基金资助项目(12MS118)
摘 要:介绍了一种基于改进的粒子群优化(PSO)算法的PID控制器参数优化方法。通过将PSO基本算法中的惯性权重进行线性递减,很好地协调了PSO的全局与局部寻优能力。将改进的粒子群PID控制器参数优化方法应用于多扰动、大惯性的电厂主汽温控制系统,仿真结果表明,该方法在保证控制系统稳定性的基础上极大地提高控制系统的精度和快速性。The improved particle swarm optimization (PSO) is used to optimize the PID controller parameters in this paper. By using of the linear degression of inertia weight approach to modified the basic particle swarm optimization, the improved particle swarm optimization coordinates the global and local searching capability. The modified algorithm is applied to main steam temperature control system in power plant whose controlled objects are multidisturbance and large inertia. Simulation results show that the improved PSO can enhance the control accuracy and rapidity as well as ensure the control stability.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.142.228