检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:喻伟[1,2] 李百战[1,2] 杨明宇[1,2] 杜秀媛[1,2]
机构地区:[1]重庆大学三峡库区生态环境教育部重点实验室,重庆400045 [2]重庆大学城市建设与环境工程学院,重庆400045
出 处:《中南大学学报(自然科学版)》2012年第12期4949-4955,共7页Journal of Central South University:Science and Technology
基 金:国家自然科学基金重点资助项目(50838009)
摘 要:为得出一种能快够速且准确预测建筑能耗和室内热舒适状况的方法,提出应用人工神经网络来预测建筑能耗和室内热舒适状况的方法,并通过遗传优化算法对神经网络的连接权进行优化;其次,对影响建筑能耗和室内热舒适状况的主要因素进行分析,并针对这些主要因素建立基于GA-BP网络的建筑能耗和室内热舒适状况的预测模型;结合EnergyPlus模型计算所得出的144组样本数据,训练和测试所建立的住宅建筑能耗和室内热舒适状况的GA-BP网络模型,测试结果表明该模型有较高的预测精度。该预测方法的建立使建筑师在设计阶段能够简单且准确地获得设计建筑的能耗和室内舒适状况,从而使设计向着有利于建筑节能和改善室内热环境的方向发展。In order to predict energy consumption and indoor thermal comfort quickly and accurately, a method applying artificial neuron network (ANN) was proposed. Meanwhile, the connect weight of ANN network was optimized using genetic algorithm. Furthermore, the main influence factors effecting the energy consumption and indoor thermal comfort was analyzed, it was put forward in terms of the main factors that the predicting model was based on the GA-BP network to predict energy consumption and indoor thermal comfort. Eventually, the GA-BP network model was trained and tested with 144 samples which was calculated by the EnergyPlus software, and the result proves that the model predicts energy consumption and indoor thermal comfort with high accuracy.
关 键 词:建筑能耗 热舒适 多目标预测模型 GA-BP人工神经网络 住宅建筑
分 类 号:TG111.3[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28