Numerical Simulation of VHF Effects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure  

Numerical Simulation of VHF Effects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure

在线阅读下载全文

作  者:庄娟 孙继忠 桑超峰 王德真 

机构地区:[1]School of Physics and Optoelectronic Technology,Dalian University of Technology

出  处:《Plasma Science and Technology》2012年第12期1106-1109,共4页等离子体科学和技术(英文版)

基  金:supported by National Natural Science Foundation of China(Nos.10775026,50537020,and50528707)

摘  要:The characteristics of homogeneous discharges in mixed gases of hydrogen diluted silane and argon at atmospheric pressure are investigated numerically based on a one-dimensional fluid model. This model takes into account the primary processes-excitation and ionization, sixteen reactions of radicals with radicals in silane/hydrogen/argon discharges-and therefore, can adequately represent the discharge plasma. We analyze the effects of very high frequency (VHF) on the densities of species (e, H, SiH3, SiH+ and SiH2) in such discharges using the model. The simulation results show that the densities of SiH3, SiH+, H, and SiH2 increase with VHF when the VHF ranges from 30 MHz to 150 MHz. It is found that the deposition rate of uc-Si:H film depends on the concentration of SiH3, SiH+, SiH2, and H in the plasma. The effects of VHF on the deposition rate and the amount of crystallized fraction for uc-Si:H film growth is also discussed in this paper.The characteristics of homogeneous discharges in mixed gases of hydrogen diluted silane and argon at atmospheric pressure are investigated numerically based on a one-dimensional fluid model. This model takes into account the primary processes-excitation and ionization, sixteen reactions of radicals with radicals in silane/hydrogen/argon discharges-and therefore, can adequately represent the discharge plasma. We analyze the effects of very high frequency (VHF) on the densities of species (e, H, SiH3, SiH+ and SiH2) in such discharges using the model. The simulation results show that the densities of SiH3, SiH+, H, and SiH2 increase with VHF when the VHF ranges from 30 MHz to 150 MHz. It is found that the deposition rate of uc-Si:H film depends on the concentration of SiH3, SiH+, SiH2, and H in the plasma. The effects of VHF on the deposition rate and the amount of crystallized fraction for uc-Si:H film growth is also discussed in this paper.

关 键 词:plasma numerical simulation hydrogen dilution 

分 类 号:TN304.12[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象