Discrete ternary particle swarm optimization for area optimization of MPRM circuits  被引量:10

Discrete ternary particle swarm optimization for area optimization of MPRM circuits

在线阅读下载全文

作  者:俞海珍 汪鹏君 汪迪生 张会红 

机构地区:[1]Institute of Circuits and Systems,Ningbo University

出  处:《Journal of Semiconductors》2013年第2期118-123,共6页半导体学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.61076032);the S&T Plan of Zhejiang Provincial Science and Technology Department(No.2010C31012);the S&T Plan of Zhejiang Provincial Education Department(No.Y201016317);the S&T Plan of Ningbo University(No.xk1089);the K.C.Wong Magna Fund in Ningbo University

摘  要:Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed- Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average.Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed- Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average.

关 键 词:area optimization DTPSO algorithm MPRM circuits polarity conversion 

分 类 号:TN47[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象